|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Special Issue: Nonlinear Dynamics in Chemical Sciences: Part II
From Poincaré Maps to Lagrangian Descriptors:
The Case of the Valley Ridge Inflection Point Potential
Rebecca Crossley, Makrina Agaoglou, Matthaios Katsanikas, Stephen Wiggins School of Mathematics, University of Bristol,
Fry Building, Woodland Road,
BS8 1UG Bristol, United Kingdom
Аннотация:
In this paper we compare the method of Lagrangian descriptors with the classical
method of Poincaré maps for revealing the phase space structure of two-degree-of-freedom
Hamiltonian systems. The comparison is carried out by considering the dynamics of a twodegree-
of-freedom system having a valley ridge inflection point (VRI) potential energy surface.
VRI potential energy surfaces have four critical points: a high energy saddle and a lower energy
saddle separating two wells. In between the two saddle points is a valley ridge inflection point
that is the point where the potential energy surface geometry changes from a valley to a ridge.
The region between the two saddles forms a reaction channel and the dynamical issue of interest
is how trajectories cross the high energy saddle, evolve towards the lower energy saddle, and
select a particular well to enter. Lagrangian descriptors and Poincaré maps are compared for
their ability to determine the phase space structures that govern this dynamical process.
Ключевые слова:
phase space structure, periodic orbits, stable and unstable manifolds, homoclinic
and heteroclinic orbits, Poincaré maps, Lagrangian descriptors.
Поступила в редакцию: 16.12.2020 Принята в печать: 26.01.2021
Образец цитирования:
Rebecca Crossley, Makrina Agaoglou, Matthaios Katsanikas, Stephen Wiggins, “From Poincaré Maps to Lagrangian Descriptors:
The Case of the Valley Ridge Inflection Point Potential”, Regul. Chaotic Dyn., 26:2 (2021), 147–164
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1108 https://www.mathnet.ru/rus/rcd/v26/i2/p147
|
Статистика просмотров: |
Страница аннотации: | 127 | Список литературы: | 30 |
|