Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2020, том 25, выпуск 6, страницы 597–615
DOI: https://doi.org/10.1134/S1560354720060076
(Mi rcd1086)
 

Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)

Quantifying the Transition from Spiral Waves to Spiral Wave Chimeras in a Lattice of Self-sustained Oscillators

Igor A. Shepeleva, Andrei V. Bukha, Sishu S. Munib, Vadim S. Anishchenkoa

a Department of Physics, Saratov State University, ul. Astrakhanskaya 83, 410010 Saratov, Russia
b School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
Список литературы:
Аннотация: The present work is devoted to the detailed quantification of the transition from spiral waves to spiral wave chimeras in a network of self-sustained oscillators with twodimensional geometry. The basic elements of the network under consideration are the van der Pol oscillator or the FitzHugh – Nagumo neuron. Both of the models are in the regime of relaxation oscillations. We analyze the regime by using the indices of local sensitivity, which enables us to evaluate the sensitivity of each oscillator at a finite time. Spiral waves are observed in both lattices when the interaction between elements has a local character. The dynamics of all the elements is regular. There are no pronounced high-sensitive regions. We have discovered that, when the coupling becomes nonlocal, the features of the system change significantly. The oscillation regime of the spiral wave center element switches to a chaotic one. Besides, a region with high sensitivity occurs around the wave center oscillator. Moreover, we show that the latter expands in space with elongation of the coupling range. As a result, an incoherence cluster of the spiral wave chimera is formed exactly within this high-sensitive area. A sharp increase in the values of the maximal Lyapunov exponent in the positive region leads to the formation of the incoherence cluster. Furthermore, we find that the system can even switch to a hyperchaotic regime when several Lyapunov exponents become positive.
Ключевые слова: spatiotemporal pattern, chimera state, van der Pol oscillator, FitzHugh – Nagumo neuron, spiral wave, spiral wave chimera, nonlocal interaction, Lyapunov exponent.
Финансовая поддержка Номер гранта
Deutsche Forschungsgemeinschaft 163436311-SFB 910
Российский фонд фундаментальных исследований 20-52-12004
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Project No 163436311-SFB 910. I.A.S., A.V.B. and V.S.A. thank for the financial support provided by RFBR and DFG according to the research project #20-52-12004, S.S.M. acknowledges the use of New Zealand eScience Infrastructure (NeSI) high performance computing facilities as part of this research.
Поступила в редакцию: 12.05.2020
Принята в печать: 07.10.2020
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Igor A. Shepelev, Andrei V. Bukh, Sishu S. Muni, Vadim S. Anishchenko, “Quantifying the Transition from Spiral Waves to Spiral Wave Chimeras in a Lattice of Self-sustained Oscillators”, Regul. Chaotic Dyn., 25:6 (2020), 597–615
Цитирование в формате AMSBIB
\RBibitem{SheBukMun20}
\by Igor A. Shepelev, Andrei V. Bukh, Sishu S. Muni, Vadim S. Anishchenko
\paper Quantifying the Transition from Spiral Waves to Spiral Wave Chimeras in a Lattice of Self-sustained Oscillators
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 6
\pages 597--615
\mathnet{http://mi.mathnet.ru/rcd1086}
\crossref{https://doi.org/10.1134/S1560354720060076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4184416}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000596572500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097225047}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1086
  • https://www.mathnet.ru/rus/rcd/v25/i6/p597
  • Эта публикация цитируется в следующих 12 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:101
    Список литературы:24
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024