|
Эта публикация цитируется в 36 научных статьях (всего в 36 статьях)
A New $(3+1)$-dimensional Hirota Bilinear Equation: Its Bäcklund Transformation and Rational-type Solutions
Kamyar Hosseinia, Majid Samavatb, Mohammad Mirzazadehc, Wen-Xiu Madefg, Zakia Hammouchh a Department of Mathematics, Rasht Branch, Islamic Azad University,
P.O. Box 41335-3516 Rasht, Iran
b Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan,
P.O. Box 41335-1914 Guilan, Rasht, Iran
c Department of Engineering Sciences, Faculty of Technology and Engineering,
East of Guilan, University of Guilan,
P.C. 44891-63157 Rudsar-Vajargah, Iran
d School of Mathematics, South China University of Technology,
510640 Guangzhou, China
e Department of Mathematics, Zhejiang Normal University,
Jinhua, 321004 Zhejiang, China
f Department of Mathematics, King Abdulaziz University,
Jeddah, Saudi Arabia
g Department of Mathematics and Statistics, University of South Florida,
FL 33620-5700 Tampa, USA
h Division of Applied Mathematics, Thu Dau Mot University,
Binh Duong Province, Vietnam
Аннотация:
The behavior of specific dispersive waves in a new $(3+1)$-dimensional Hirota bilinear (3D-HB) equation is studied. A Bäcklund transformation and a Hirota bilinear form of the model are first extracted from the truncated Painlevé expansion. Through a series of mathematical analyses, it is then revealed that the new 3D-HB equation possesses a series of rational-type solutions. The interaction of lump-type and 1-soliton solutions is studied and some interesting and useful results are presented.
Ключевые слова:
new $(3+1)$-dimensional Hirota bilinear equation, Bäcklund transformation, Hirota bilinear form, rational-type solutions.
Поступила в редакцию: 07.05.2020 Принята в печать: 15.06.2020
Образец цитирования:
Kamyar Hosseini, Majid Samavat, Mohammad Mirzazadeh, Wen-Xiu Ma, Zakia Hammouch, “A New $(3+1)$-dimensional Hirota Bilinear Equation: Its Bäcklund Transformation and Rational-type Solutions”, Regul. Chaotic Dyn., 25:4 (2020), 383–391
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1071 https://www.mathnet.ru/rus/rcd/v25/i4/p383
|
|