Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2020, том 25, выпуск 3, страницы 237–249
DOI: https://doi.org/10.1134/S1560354720030016
(Mi rcd1061)
 

Stability of a One-degree-of-freedom Canonical System in the Case of Zero Quadratic and Cubic Part of a Hamiltonian

Boris S. Bardinab, Víctor Lancharesc

a Computer Modelling Laboratory, Department of Mechanics and Control of Machines, Mechanical Engineering Research Institute of the Russian Academy of Sciences, M.Kharitonyevskiy per. 4, Moscow, 101990 Russia
b Department of Mechatronic and Theoretical Mechanics, Faculty of Information Technologies and Applied Mathematics, Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow, 125993 Russia
c Departamento de Matemáticas y Computación, CIME, Universidad de La Rioja, 26006 Logroño, Spain
Список литературы:
Аннотация: We consider the stability of the equilibrium position of a periodic Hamiltonian system with one degree of freedom. It is supposed that the series expansion of the Hamiltonian function, in a small neighborhood of the equilibrium position, does not include terms of second and third degree. Moreover, we focus on a degenerate case, when fourth-degree terms in the Hamiltonian function are not enough to obtain rigorous conclusions on stability or instability. A complete study of the equilibrium stability in the above degenerate case is performed, giving sufficient conditions for instability and stability in the sense of Lyapunov. The above conditions are expressed in the form of inequalities with respect to the coefficients of the Hamiltonian function, normalized up to sixth-degree terms inclusive.
Ключевые слова: Hamiltonian systems, Lyapunov stability, normal forms, KAM theory, case of degeneracy.
Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации 3.3858.2017/4.6
Ministry of Science and Innovation of Spanish MTM2017-88137-C2-2-P
University of La Rioja REGI 2018751
The first author performed his part of the work at the Moscow Aviation Institute (National Research University) within the framework of the state assignment (project No 3.3858.2017/4.6). The second author acknowledges support from the Spanish Ministry of Science and Innovation through project MTM2017-88137-C2-2-P, and from the University of La Rioja through project REGI 2018751.
Поступила в редакцию: 04.12.2019
Принята в печать: 26.03.2020
Реферативные базы данных:
Тип публикации: Статья
MSC: 34D20, 37C75, 37J40
Язык публикации: английский
Образец цитирования: Boris S. Bardin, Víctor Lanchares, “Stability of a One-degree-of-freedom Canonical System in the Case of Zero Quadratic and Cubic Part of a Hamiltonian”, Regul. Chaotic Dyn., 25:3 (2020), 237–249
Цитирование в формате AMSBIB
\RBibitem{BarLan20}
\by Boris S. Bardin, V{\'\i}ctor Lanchares
\paper Stability of a One-degree-of-freedom Canonical System in the Case of Zero Quadratic and Cubic Part of a Hamiltonian
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 3
\pages 237--249
\mathnet{http://mi.mathnet.ru/rcd1061}
\crossref{https://doi.org/10.1134/S1560354720030016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4105202}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000536729000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085566583}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1061
  • https://www.mathnet.ru/rus/rcd/v25/i3/p237
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:127
    Список литературы:26
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025