Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2019, том 24, выпуск 6, страницы 682–703
DOI: https://doi.org/10.1134/S1560354719060078
(Mi rcd1033)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Jumps of Energy Near a Homoclinic Set of a Slowly Time Dependent Hamiltonian System

Sergey V. Bolotinab

a University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706-1325, USA
b Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Список литературы:
Аннотация: We consider a Hamiltonian system depending on a parameter which slowly changes with rate $\varepsilon \ll 1$. If trajectories of the frozen autonomous system are periodic, then the system has adiabatic invariant which changes much slower than energy. For a system with 1 degree of freedom and a figure 8 separatrix, Anatoly Neishtadt [18] showed that for trajectories crossing the separatrix, the adiabatic invariant, and hence the energy, have quasirandom jumps of order $\varepsilon$. We prove a partial analog of Neishtadt's result for a system with $n$ degrees of freedom such that the frozen system has a hyperbolic equilibrium possessing several homoclinic orbits. We construct trajectories staying near the homoclinic set with energy having jumps of order $\varepsilon$ at time intervals of order $|\ln\varepsilon|$, so the energy may grow with rate $\varepsilon/|\ln\varepsilon|$. Away from the homoclinic set faster energy growth is possible: if the frozen system has chaotic behavior, Gelfreich and Turaev [16] constructed trajectories with energy growth rate of order $\varepsilon$.
Ключевые слова: Hamiltonian system, homoclinic orbit, action functional, Poincare function, symplectic relation, separatrix map, adiabatic invariant.
Финансовая поддержка Номер гранта
Российский научный фонд 19-71-30012
The research was funded by a grant from the Russian Science Foundation (Project No. 19-71-30012).
Поступила в редакцию: 22.10.2019
Принята в печать: 07.11.2019
Реферативные базы данных:
Тип публикации: Статья
MSC: 37D, 37J, 70H
Язык публикации: английский
Образец цитирования: Sergey V. Bolotin, “Jumps of Energy Near a Homoclinic Set of a Slowly Time Dependent Hamiltonian System”, Regul. Chaotic Dyn., 24:6 (2019), 682–703
Цитирование в формате AMSBIB
\RBibitem{Bol19}
\by Sergey V. Bolotin
\paper Jumps of Energy Near a Homoclinic Set of a Slowly Time Dependent Hamiltonian System
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 6
\pages 682--703
\mathnet{http://mi.mathnet.ru/rcd1033}
\crossref{https://doi.org/10.1134/S1560354719060078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4040814}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511339400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85076348314}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1033
  • https://www.mathnet.ru/rus/rcd/v24/i6/p682
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:202
    Список литературы:42
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024