|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
On Resonances in Hamiltonian Systems with Three Degrees of Freedom
Alexander A. Karabanova, Albert D. Morozovb a Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, UK
b Lobachevsky State University of Nizhny Novgorod,
pr. Gagarina 23, Nizhny Novgorod, 603950 Russia
Аннотация:
We address the dynamics of near-integrable Hamiltonian systems with 3 degrees of freedom in extended vicinities of unperturbed resonant invariant Liouville tori. The main attention is paid to the case where the unperturbed torus satisfies two independent resonance conditions. In this case the average dynamics is 4-dimensional, reduced to a generalised motion under a conservative force on the 2-torus and is generically non-integrable. Methods of differential topology are applied to full description of equilibrium states and phase foliations of the average system. The results are illustrated by a simple model combining the non-degeneracy and non-integrability of the isoenergetically reduced system.
Ключевые слова:
Hamiltonian systems, resonances, topological structures.
Поступила в редакцию: 26.04.2019 Принята в печать: 05.11.2019
Образец цитирования:
Alexander A. Karabanov, Albert D. Morozov, “On Resonances in Hamiltonian Systems with Three Degrees of Freedom”, Regul. Chaotic Dyn., 24:6 (2019), 628–648
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1030 https://www.mathnet.ru/rus/rcd/v24/i6/p628
|
Статистика просмотров: |
Страница аннотации: | 143 | Список литературы: | 32 |
|