|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
V. I. Arnold's "Pointwise" KAM Theorem
L. Chierchia, C. E. Koudjinan Dipartimento di Matematica, Università Roma Tre,
Largo S. L. Murialdo 1, I-00146 Roma, Italy
Аннотация:
We review V. I. Arnold's 1963 celebrated paper [1] Proof of A. N. Kolmogorov's
Theorem on the Conservation of Conditionally Periodic Motions with a Small Variation
in the Hamiltonian, and prove that, optimising Arnold's scheme, one can get “sharp” asymptotic quantitative conditions (as $\varepsilon \to 0$, $\varepsilon$ being the strength of the perturbation). All constants involved are explicitly computed.
Ключевые слова:
Nearly-integrable Hamiltonian systems, KAM theory, Arnold's Theorem, small divisors, perturbation theory, symplectic transformations.
Поступила в редакцию: 11.09.2019 Принята в печать: 11.10.2019
Образец цитирования:
L. Chierchia, C. E. Koudjinan, “V. I. Arnold's "Pointwise" KAM Theorem”, Regul. Chaotic Dyn., 24:6 (2019), 583–606
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1027 https://www.mathnet.ru/rus/rcd/v24/i6/p583
|
Статистика просмотров: |
Страница аннотации: | 159 | Список литературы: | 34 |
|