Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Дискретная и вычислительная геометрия
7 октября 2014 г. 13:45, г. Москва, ИППИ РАН, Большой Каретный переулок, 19, ауд. 307
 


On the signed number of circuits of even length in nonoriented graphs

С. К. Ландо

Количество просмотров:
Эта страница:328

Аннотация: A chord diagram is a one-face map. To a chord diagram, a simple graph can be associated, which is the intersection graph of the diagram. The chord diagram structure allows one to assign signs to circuits of even length in this graph in a natural way. The difference between the number of positive and negative circuits of given length $2k$ is a graph invariant. This invariant is closely related to the weight system (in other words, to the Vassiliev knot invariants) associated to the Lie algebra $\mathfrak{sl}_2$. It happens that this invariant admits a natural extension to arbitrary graphs, including those that are not intersection graphs of chord diagrams. This fact leads to a number of questions concerning the existence of more graph invariants related to $\mathfrak{sl}_2$ and other Lie algebras.
The talk is based on a joint paper with E. Kulakova, T. Mukhutdinova and G. Rybnikov (2014).
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024