Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Advances in Stochastic Analysis
3 сентября 2014 г. 15:00–16:30, Москва, ул. Шаболовка, д. 28, ауд. 309
 




[Linear and Conic Programming Approaches to High-Dimensional Errors-in-variables Models]

A. Tsybakov

CREST-ENSAE

Количество просмотров:
Эта страница:224
Youtube:



Аннотация: We consider the regression model with observation error in the design when the dimension can be much larger than the sample size and the true parameter is sparse. We propose two new estimators, based on linear and conic programming, and we prove that they satisfy oracle inequalities similar to those for the model with exactly known covariates. The only difference is that they contain additional scaling with the l_1 or l_2 norm of the true parameter. The scaling with the l_2 norm is minimax optimal and it is achieved on conic programming, while the scaling with the l_1 norm is achieved on the linear programming estimator, which is easier to implement. This is a joint work with Alex Belloni and Mathieu Rosenbaum.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024