Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2014
27 июля 2014 г. 11:15, г. Дубна
 


Immersions of a disc in the plane. Lecture 1

P. Dehornoy

University of Grenoble 1 — Joseph Fourier
Видеозаписи:
Flash Video 459.0 Mb
Flash Video 2,267.8 Mb
MP4 1,736.1 Mb

Количество просмотров:
Эта страница:290
Видеофайлы:204

P. Dehornoy



Аннотация: Imagine an elastic disc floating freely in space. It can take many forms. Now project this disc on a horizontal plane. Which form do you see? Almost anything is possible. The projection of the boundary of this disc is the projection of a circle in the space, and can be any closed curve.
Now suppose that your floating disc is never vertical, and look at his projection on a horizontal plane. Can we obtain as many forms as before? No. For example the projection of the boundary cannot be a figure-eight.
Which curves in the plane can be obtained by projecting the boundary of such a never-vertical-disc? The answer of this question is a theorem of Samuel Blank. Explaining and proving it is the main goal of this course. It is also a pretext to introduce and play with (one of) the most fundamental object of modern geometry and topology: the «fundamental group» of a space.
There are no particular prerequisites for this course, except to understand a bit of english! The program should be roughly:
  • Definition of embeddings and immersions, analysis of the problem of embedding a disc in the plane. Introduction to the fundamental group.
  • Statement of the theorem of S. Blank, proof of some easy cases.
  • End of the proof.
  • (if time permits) Introduction to Arnol’d’s invariants of planar curves.


Язык доклада: английский

Website: https://www.mccme.ru/dubna/2014/courses/dehornoy.htm
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024