Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2014
28 июля 2014 г. 15:30, г. Дубна
 


Математика вокруг проблемы $n$ тел: интегрируемые системы и КАМ-теория. Лекция 4

О. Л. Ромаскевич
Видеозаписи:
Flash Video 2,464.0 Mb
Flash Video 498.7 Mb
MP4 1,887.8 Mb
Дополнительные материалы:
Adobe PDF 130.0 Kb
Adobe PDF 151.4 Kb

Количество просмотров:
Эта страница:563
Видеофайлы:298
Материалы:158

О. Л. Ромаскевич



Аннотация: Если поступить очень жестоко и отобрать у математика карандаш и бумагу, он будет смотреть на небо в поисках новых задач. Вопрос о движении планет (в математическом мире встречающийся под кодовым названием «Задача $n$ тел») является чрезвычайно сложным – настолько сложным, что даже для специальных подслучаев случая $n=3$ каждый год публикуется огромное количество работ. Разобрать все аспекты этой задачи невозможно даже за семестровый курс. Мы, однако, не испугаемся, и попробуем поиграться в математику, которая здесь возникает.
Основной мотивацией для нас будет задача двух тел: задача о движении одной планеты вокруг Солнца в предположении о том, что как будто бы никаких других планет в округе нет. В этом случае траектории системы описываются коническими сечениями, а замкнутые орбиты являются эллипсами. В реальности все намного сложнее, однако в первом приближении планеты действительно ходят по эллипсам вокруг Солнца. Этот факт был экспериментально подмечен Иоганном Кеплером, а затем выведен Ньютоном из законов всемирного тяготения. Мы пройдем их путем, а также окинем эту историю более современным взглядом.
Задача двух тел является одним из примеров так называемой интегрируемой гамильтоновой системы: динамической системы, в которой сохраняется не только энергия, а ещё достаточное количество дополнительных физических величин. Мы поговорим об общей теории таких систем, а также посмотрим на некоторые замечательные примеры.
Одной из целей курса является понятно объяснить, что такое теория Колмогорова–Арнольда–Мозера, рассматривая игрушечные примеры.

Программа курса
1. Проблема двух тел, закон всемирного тяготения и законы Кеплера. «Нам повезло»: теорема Бертрана, выделяющая ньютоновский потенциал из всех прочих.
2. Интегрируемые гамильтоновы системы: арнольдовские торы на примерах. Проблема двух тел, волчки, геодезические на поверхностях вращения и на эллипсоиде.
3. Сложность задачи трёх тел – появление хаоса в окрестности периодической траектории (по аналогии с возмущением геодезических на торах вращения). Подкова Смейла в окрестности орбиты Ляпунова.
4. Надежда на некоторую простоту задачи трёх тел – квазипериодичность траекторий. Теорема КАМ в игрушечной модели теории возмущений (косом произведении на цилиндре). Как возникает теория чисел в гамильтоновой динамике: диофантовы числа вращения и «выживающие торы».
Очень хочется, чтобы курс вышел понятным школьникам: целевой аудиторией таким образом будут 10–11 классы, однако вероятно, что и студентам будет интересно.
Очень желательно знакомство с анализом: не бояться дифферецировать функции одной (а лучше – нескольких переменных), оперировать с рядами, интегрировать функции одной переменной, решать простейшие дифференциальные уравнения, иметь интуитивное представление о мере. Также желательно уметь работать со скалярным и векторным произведением в трехмерном пространстве. Если что-то из этого вам не знакомо, бояться приходить не стоит, и без всего этого аппарата общий смысл происходящего будет ясен.

Дополнительные материалы: romaskevich_ex1.pdf (130.0 Kb) , romaskevich_ex2.pdf (151.4 Kb)

Website: https://www.mccme.ru/dubna/2014/courses/romaskevich.htm
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024