Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Advances in Optimization and Statistics
15 мая 2014 г. 17:45–18:20, г. Москва, ИППИ РАН
 




[Computation of an effective number of simultaneous X^2 (Chi Square) tests]

Jens Stange

Weierstrass Institute for Applied Analysis and Stochastics, Berlin

Количество просмотров:
Эта страница:448
Youtube:



Аннотация: Common X^2 tests are very well known and frequently applied in statistical analyses in particular for discrete models. An application to genetic association studies is considered, where a large number M, say, of 2x3 contingency tables is simultaneously tested. A method controlling the family wise error rate is shown, which makes use of an effective number of tests in Sidak multiplicity correction favor. This method considers an approximation of the full M-dimensional distribution of the involved X^2 test statistics, by a product of k-dimensional marginal distributions. A challenge of this procedure is an efficient computation of the k-dimensional distributions. Besides time consuming Monte Carlo procedures, there are only few implementations for even smaller dimensions of multivariate distributions. Existing formulas for the cumulative distribution function of a multivariate X^2 distribution are now implemented for an approximations with k equal to up to 4.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024