Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Advances in Optimization and Statistics
16 мая 2014 г. 14:20–14:55, г. Москва, ИППИ РАН
 




[Finite sample analysis of semiparametric M-Estimators]

Andreas Andresen

Weierstrass Institute for Applied Analysis and Stochastics, Berlin

Количество просмотров:
Эта страница:304
Youtube:



Аннотация: Semiparametric Models are characterized by an infinite dimensional parameter, while the target of estimation is only a finite - often low - dimensional. A prominent example is the estimation of a finite dimensional projection of the full parameter via an M-Estimator, as for example the profile Maximum Likelihood Estimator (pMLE). Despite the full model being nonparametric root n rates can be attained for such estimators. The semiparametric Wilks and Fisher Theorems show that the semiparametric log likelihood quotient is asymptotically chi square distributed - the degrees of freedom equal the dimension of the target parameter - and that the pMLE is semiparametrically efficient. We present a method how to extend these results to a non asymptotic setting and how to obtain explicit bounds for the "small terms". This allows to determine for a broad class of models critical ratios of the full dimension to the sample size in the context of sieve estimators. The results are illustrated with the single index model.


Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024