Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Серия лекций Джоэла Спенсера
13 июня 2014 г. 15:00, г. Москва, ул. Тимура Фрунзе, д. 24
 


Zero-one laws for random graphs

J. Spencer
Видеозаписи:
Flash Video 1,741.8 Mb
MP4 1,741.8 Mb

Количество просмотров:
Эта страница:161
Видеофайлы:87



Аннотация: Kolmogorov first showed that a broad family of events, often called tail events, in an infinite space have probability zero or one. For a sequence of discrete probability spaces the analogous result is that the limiting probability is either zero or one. We restrict (mostly) to graphs and consider properties A expressible in the First Order Theory. There the basic result was first shown by Glebskii, Kogan, Liagonkii and Talanov and later, independently, by Fagin: For the random graph $G(n, p(n))$ with $p = p(n)$ fixed and any first order property A the limiting (in $n$) probability of $A$ is either zero or one. Together with Shelah, this speaker showed that this Zero-One law also holds when $p = n-1$ and is an irrational number. Roughly (and not quite accurately) this means such $p = n-1$ are boring functions where nothing interesting is occurring. We examine Zero-One laws for Random Graphs and other sequences of discrete random structures. For other $p(n)$, such as $p(n) = n-1$ and $p(n) = \ln n$ while a Zero-One Law does not hold we are able to describe completely the possible limiting behaviors.

Язык доклада: английский

Website: https://tech.yandex.ru/events/workshops/msk-jun-2014-lectures/talks/1959
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024