Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Workshop on Extremal Graph Theory
6 июня 2014 г. 10:00, г. Москва, Московский офис Яндекса, ул. Льва Толстого, д. 16
 


Finding needles in exponential haystacks

J. Spencer

New York University's Courant Institute of Mathematical Sciences
Видеозаписи:
Flash Video 1,666.8 Mb
MP4 1,666.8 Mb

Количество просмотров:
Эта страница:292
Видеофайлы:155



Аннотация: We discuss two recent methods in which an object with a certain property is sought. In both, using of a straightforward random object would succeed with only exponentially small probability. The new randomized algorithms run efficiently and also give new proofs of the existence of the desired object. In both cases there is a potentially broad use of the methodology.
(i) Consider an instance of $k$-SAT in which each clause overlaps (has a variable in common, regardless of the negation symbol) with at most d others. Lovasz showed that when $ed < 2^k$ (regardless of the number of variables) the conjunction of the clauses was satisfiable. The new approach due to Moser is to start with a random true-false assignment. In a WHILE loop, if any clause is not satisfied we “fix it” by a random reassignment. The analysis of the algorithm is unusual, connecting the running of the algorithm with certain Tetris patterns, and leading to some algebraic combinatorics. [These results apply in a quite general setting with underlying independent “coin flips” and bad events (the clause not being satisfied) that depend on only a few of the coin flips.]
(ii) No Outliers. Given $n$ vectors $r_j$ in $n$-space with all coefficients in $[-1,+1]$ one wants a vector $x=(x_1, \dots, x_n)$ with all $x_i = +1$ or $-1$ so that all dot products $x \cdot r_j$ are at most $K \sqrt{n}$ in absolute value, $K$ an absolute constant. A random $x$ would make $x \cdot r_j$ Gaussian but there would be outliers. The existence of such an x was first shown by the speaker. The first algorithm was found by Nikhil Bansal. The approach here, due to Lovett and Meka, is to begin with $x = (0, \dots, 0)$ and let it float in a kind of restricted Brownian Motion until all the coordinates hit the boundary.

Язык доклада: английский

Website: https://tech.yandex.ru/events/workshops/msk-jun-2014/talks/1910
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024