|
|
Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика» (семинар С. П. Новикова)
4 июня 2014 г. 14:00, г. Москва, МИАН
|
|
|
|
|
|
Об объемах некоторых классических супермногообразий
Ф. Ф. Воронов University of Manchester
|
Количество просмотров: |
Эта страница: | 214 |
|
Аннотация:
В суперслучае объем (определяемый по метрике или симплектической структуре) выражается через березинский интеграл и может проявлять неожиданные свойства. Например, быть нулем для нетривиального супермногообразия. Так, Березин обнаружил (в 1970-е гг.), что полная мера Хаара унитарной супергруппы равна нулю. Исходя из своих соображений, Виттен недавно предположил, что тождественно нулевым будет лиувиллев объем для всякого компактного супермногообразия с четной симплектической структурой. Это не так; и в качестве контрпримера можно взять супераналог комплексного проективного пространства с формой Фубини-Штуди. Сам вид формулы для объема оказывается весьма интересным. Его можно понимать как аналитическое продолжение формулы для обычного комплексного проективного пространства. Такая же ситуация для
некоторых других классических супермногообразий (типа многообразия Штифеля). Мы опишем эти примеры и, в частности, дадим простое объяснение (и обобщение) утверждения Березина про объем унитарной супергруппы. Недавно к аналитическим формулам для объемов (для групп Ли) возник интерес с другой стороны, а именно в работах Мкртчяна и Веселова, исходивших из физических мотивировок и теории "универсальной алгебры Ли" Вожэ-Делиня. Возможно, тут есть связь.
|
|