Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная молодежная конференция «Геометрия и управление»
17 апреля 2014 г. 12:00, г. Москва, МИАН
 


The Laplace–Beltrami Operator on Conic and Anti-conic Surfaces

Dario Prandi

LSIS, Université de Toulon, France
Видеозаписи:
Flash Video 1,358.3 Mb
Flash Video 227.5 Mb
MP4 831.7 Mb
Дополнительные материалы:
Adobe PDF 991.4 Kb
Adobe PDF 43.7 Kb

Количество просмотров:
Эта страница:351
Видеофайлы:106
Материалы:100

Dario Prandi



Аннотация: We consider the evolution of a free particle on a two-dimensional manifold endowed with the degenerate Riemannian metric $ds^2=dx^2+|x|^{2\alpha}d\theta^2$, where $x\in R$, $\theta\in S^1$ and the parameter $\alpha\in R$. For $\alpha$ smaller or equal to $-1$ this metric describes cone-like manifolds (for $\alpha=-1$ it is a flat cone). For $\alpha=0$ it is a cylinder. For $\alpha$ bigger or equal to $1$ it is a Grushin-like metric.
In particular, we discuss whether a free particle or the heat can cross the singular set ${x=0}$ or not, and in which cases the singularity absorbs the heat. (The latter problem is known as the stochastic completeness problem.)
In the last part of the talk we will present some recent results regarding the spectrum of the Laplace–Beltrami operator associated with these metrics and the Aharonov-Bohm effect in the Grushin case.
This is a joint work with U. Boscain and M. Seri.

Дополнительные материалы: slides.pdf (991.4 Kb) , abstract.pdf (43.7 Kb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024