Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная молодежная конференция «Геометрия и управление»
15 апреля 2014 г. 17:00, Стендовые доклады, г. Москва, МИАН
 


Optimal Quantum Control of the Landau–Zener System by Measurements

Alexander Pechen, Anton Trushechkin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Дополнительные материалы:
Adobe PDF 37.7 Kb

Количество просмотров:
Эта страница:341
Материалы:78

Аннотация: In the recent works by A. Pechen et al. and F. Shuang et al. a problem of optimal control of a two-level quantum system by nonselective measurements was considered. In these works, the time instants of measurements are fixed; the maximization of a transition probability is performed over various observables. Note that, in case of two-level system, quantum dynamics without measurements is a unitary evolution in the two-dimensional complex vector space; a von Neumann observable is specified by a unit vector of the space.
\looseness=-1 In the present work, we consider a special (but important) case of two-level quantum system, namely, the Landau–Zener system (spin-1/2 charged particle in time-dependent magnetic field). We consider a problem of maximization of a transition probability when an observable is fixed, but instants of measurements are variable. We obtain full exact solution of the maximization problem in the large coupling constant limit for an arbitrary number of measurements. Also we establish a duality between two different problem statements: maximization over various observables under fixed time instants of measurements and maximization over various time instants under a fixed observable.

Дополнительные материалы: abstract.pdf (37.7 Kb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024