Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Современные геометрические методы
13 ноября 2013 г. 18:30–20:05, г. Москва, ГЗ МГУ, ауд. 14-02
 


Траекторные инварианты интегрируемых систем и траекторная эквивалентность случая Чаплыгина случаю Эйлера и задаче Якоби

С. С. Николаенко

Московский государственный университет им. М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:116

Аннотация: Теория траекторной классификации интегрируемых гамильтоновых систем была создана А.Т.Фоменко и А.В.Болсиновым как развитие теории лиувиллевой классификации Фоменко-Цишанга. В результате меченая молекула (являющаяся, как известно, полным инвариантом лиувиллевой эквивалентности), дополненная некоторой дополнительной информацией, становится уже полным инвариантом траекторной эквивалентности - t-молекулой. В рамках этой теории А.В.Болсиновым и А.Т.Фоменко была доказана непрерывная траекторная эквивалентость двух классических интегрируемых систем - случая Эйлера в динамике твёрдого тела с неподвижной точкой и задачи Якоби о геодезических на $2$-мерном эллипсоиде.
В ходе доклада предполагается обрисовать общую схему построения траекторных инвариантов на примере задачи Чаплыгина в динамике твёрдого тела в жидкости, которая оказывается траекторно эквивалентной двум упомянутым выше системам.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024