Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Группы Ли и теория инвариантов
5 марта 2014 г. 16:45, г. Москва, ГЗ МГУ, ауд. 13-06
 


Комплексная геометрия многообразий с максимальным действием тора

Ю. Устиновский

Количество просмотров:
Эта страница:234

Ю. Устиновский
Фотогалерея

Аннотация: Пусть $M^d$ — гладкое связное $d$-мерное многообразие, снабжённое эффективным действием тора $T=(S^1)^m$. Предположим, что стабилизатор некоторой точки $x$ на $M$ имеет размерность $k$. Тогда по чисто топологическим соображениям $k+m\le 2d$; если для некоторой точки $x$ достигается равенство, будем называть действие $T$ на $M$ максимальным. Примерами комплексных многообразий с максимальным действием тора могут служить комплексные компактные торы $T_{\mathbb{C}}\simeq (S^1)^{2\ell}$, полные торические многообразия, многообразия Хопфа и Калаби-Экманна. Оказывается, все компактные комплексные многообразия с максимальным действием тора допускают явное описание (Ishida arXiv:1302.0633, см. также Panov-Ustinovskiy arXiv:1008.4764 и arXiv:1308.2818). Мы подробно обсудим конструкцию таких многообразий. Если останется время, мы также изучим их геометрию, в частности, при некоторых дополнительных ограничениях, предъявим модель для когомологий Дольбо, построим на этих многообразиях трансверсально-кэлеровы слоения и опишем все аналитические подмножества.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024