Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика» (семинар С. П. Новикова)
9 января 2014 г. 14:00, г. Москва, МИАН
 


О проблеме гауссовских оптимизаторов в квантовой теории информации

А. С. Холево

Математический институт им. В. А. Стеклова РАН

Количество просмотров:
Эта страница:381

Аннотация: В классическом анализе известен результат, который кратко формулируется следующим образом: гауссовские ядра имеют (только) гауссовские максимизаторы (Либ, основываясь на работах Бабенко, Бекнера, Карлена и др.). Речь идет о том, что норма интегрального оператора из $L_p$ в $L_q$ с гауссовским ядром (при определенных ограничениях) достигается (только) на гауссовской функции.
Некоммутативным аналогом такого гауссовского оператора является бозонный гауссовский канал — вполне положительное отображение $\Phi$ алгебры канонических коммутационных соотношений. Недавно,после двенадцатилетних усилий, было найдено решение гипотезы о квантовых гауссовских оптимизаторах: показано, что спектр образа любого состояния при отображении $\Phi$ мажорируется спектром образа когерентного состояния (чистого квантового гауссовского состояния), причем когерентные состояния характеризуются этим свойством. Отсюда вытекают соответствующие следствия для некоммутативных $L_p$-норм (норм Шаттена), а также выходных энтропий Реньи и фон Неймана отображения $\Phi$, что позволяет дать явные выражения для пропускной способности моделей каналов связи, наиболее употребительных в квантовой оптике.
Необходимые сведения из квантовой теории информации будут введены по ходу доклада.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024