|
|
Семинар по геометрии алгебраических многообразий
27 марта 2009 г. 14:00, г. Москва, МИАН, комн. 540 (ул. Губкина, 8)
|
|
|
|
|
|
Гиперкэлерова гипотеза SYZ
М. С. Вербицкий |
Количество просмотров: |
Эта страница: | 369 |
|
Аннотация:
The SYZ conjecture claims that any non-ample nef bundle on a holomorphic symplectic manifold is semiample, and corresponds to a Lagrangian fibration. When a nef bundle $L$ admits a metric with semipositive curvature, cohomology of $L$ are in correspondence with holomorphic $L$-valued forms on $M$. Using stability and divisorial Zariski decomposition due to $S$. Boucksom, we show that some power of $L$ is effective. This method could be modified using multiplier ideals and Nadel vanishing to show that any nef bundle on a holomorphic symplectic manifold has a tensor power which is effective.
|
|