Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
21 ноября 2013 г. 16:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Бесконечный бесселев точечный процесс и унитарно-инвариантные меры на пространстве бесконечных матриц

А. И. Буфетов
Видеозаписи:
Flash Video 2,525.5 Mb
Flash Video 421.5 Mb
MP4 1,546.8 Mb

Количество просмотров:
Эта страница:1270
Видеофайлы:414
Youtube:

А. И. Буфетов
Фотогалерея



Аннотация: Рассмотрим ортогональный полиномиальный ансамбль Якоби. Хорошо известно (Трейси–Видом 1993), что ядра Кристоффеля-Дарбу ансамбля Якоби сходятся, в соответствующем скейлинговом пределе, к ядру Бесселя и, следовательно, при стремлении размерности к бесконечности, ансамбль Якоби сходится к Бесселеву детерминантному точечному процессу в пространстве конфигураций на полупрямой.
Рассмотрим далее бесконечный ансамбль Якоби. В докладе будет явно описан его скейлинговый предел – бесконечная мера на пространстве конфигураций на прямой, которую удобно назвать бесконечным бесселевым точечным процессом. Ядро Бесселя задает проектор на подпространство функций на полупрямой, чье преобразование Ганкеля сосредоточено на единичном отрезке. Бесконечный бесселев процесс задается пространством функций, локально интегрируемых с квадратом, являющимся конечномерным возмущением пространства, отвечающего ядру Бесселя. Далее, ограничение бесконечного бесселева процесса на подмножество конфигураций, не подходящих слишком близко к нулю, дает конечную детерминантную меру, которая задается явно. Кроме того, бесконечный бесселев процесс можно свести к детерминантному процессу домножением на мультипликативный функционал – подпространства-образы соответствующих проекторов находятся явно, однако явную формулу для их ядер удается дать только в некоторых частных случаях.
Во второй части доклада мы увидим, что бесконечный бесселев процесс естественно возникает в поставленной Бородиным и Ольшанским в 2000 г. задаче эргодического разложения бесконечных унитарно-инвариантных мер на пространствах бесконечных матриц.

Список литературы
  1. А. И. Буфетов, “О мультипликативных функционалах детерминантных процессов”, УМН, 67:1(403) (2012), 177–178  mathnet  crossref  mathscinet  zmath; A. I. Bufetov, “Multiplicative functionals of determinantal processes”, Russian Math. Surveys, 67:1 (2012), 181–182  crossref  mathscinet  zmath  adsnasa  isi  scopus
  2. A. I. Bufetov, “Infinite determinantal measures”, Electron. Res. Announc. Math. Sci., 20 (2013), 12–30  mathscinet  zmath  isi  scopus
  3. A. I. Bufetov, “Finiteness of egodic unitarily invariant measures on spaces of infinite matrices”, Ann. Inst. Fourier (Grenoble), 64 (2014) (to appear)  crossref  zmath; (2011), arXiv: 1108.2737 [math.DS]
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024