Аннотация:
Дискретные версии $p$-адических моделей квантовой теории поля описываются как модели на иерархической решетке. Дискретизацией скейлингового преобразования является блок-спиновое преобразование ренормализационной группы Каданова–Вильсона. Оператор дискретизации, который задается нетривиальным функциональным интегралом, является нормализующим преобразованием к отображению ренормализационной группы в тривиальной неподвижной точке. Процедура перенормировки может быть определена как обращение оператора дискретизации. В бозонном случае преобразование ренормализационной группы задается интегральным оператором в пространстве плотностей свободной меры. В фермионном случае оно сводится к квадратичному отображению в двумерном проективном пространстве. Точное решение ренормализационной группы в фермионом случае порождает список нетривиальных гипотез в общей теории ренормализационной группы.