Аннотация:
Понятие $G$-многообразий было введено Ю. И. Маниным в конце 60-х. По определению, $G$-многообразие – это алгебраическое многообразие снабженное действием группы $G$, причем это действие может быть или геометрическим (определенным над основным полем) или арифметическим ($G$ действует как группа Галуа замыкания основного поля). Естественная проблема, возникающая как обобщение классической задачи бирациональной геометрии, – классификация рациональных и близких к рациональным $G$-многообразий с точностью до эквивариантной бирациональной эквивалентности. В работах Ю. И. Манина и В. А. Исковских в 60–70 гг. была построена теория рациональных $G$-поверхностей (двумерных $G$-многообразий) и классифицированы их минимальные модели.
Новый импульс к развитию этой теории был дан появлением программы Мори и доказательства результата об эквивариантном разрешении особенностей. Таким образом, современная техника, в принципе, позволяет описать минимальные $G$-многообразия в размерности 3. Однако, основная трудность, появляющаяся в высших размерностях, – необходимость рассмотрения особых многообразий.
В цикле работ автора «$G$-Fano threefolds I & II» классифицируются два важных класса трехмерных особых минимальных $G$-многообразий: многообразия дель Пеццо (т.е. многообразия индекса $>1$) и горенштейновы многообразия Фано с рангом группы Пикара $>1$. Аналогично двумерному случаю, сначала многообразия описываются безотносительно действия группы $G$, а затем исследуются возможные действия $G$ на решетке классов дивизоров Вейля и описываются возникающие здесь системы корней.
Список литературы
Y. Prokhorov, “$G$-Fano threefolds, I”, Adv. Geom., 13:3 (2013), 389–418
Y. Prokhorov, “$G$-Fano threefolds, II”, Adv. Geom., 13:3 (2013), 419–434