Аннотация:
На протяжении нескольких десятилетий научные интересы Л. С. Понтрягина были тесно связаны с развитием теории дифференциальных игр. Одно из центральных мест в этой работе занимал вопрос о получении общих условий, которые характеризуют оптимальные управления-стратегии в дифференциальных играх и которые подобны принципу максимума Понтрягина в теории оптимального управления.
В настоящем докладе обсуждается один из возможных подходов к выводу таких условий оптимальности, основанный на расмотрении дифференциальной игры как некоторой нестандартной задачи минимизации негладкого функционала на множестве квазистратегий.
Показано, что в некоторой топологии “поточечной” сходимости множество таких квазистратегий компактно, а минимизируемый функционал полунепрерывен снизу. Тем самым очевидным образом устанавливается существование оптимальной квазистратегии. Мы приводим элементы негладкого анализа (анализа недифференцируемых функционалов), которые используются для вывода необходимых и достаточных условий оптимальности квазистратегии в форме интегрального и поточечного принципа максимума. Мы также описываем теорию двойственности для квазистратегий и её применение для вывода поточечного принципа максимума для оптимальной квазистратегии.
В заключение мы устанавливаем связь такого поточечного принципа максимума с субградиентами функции негладкой функции цены дифференциальной игры, являющейся обобщённым решением уравнения Гамильтона–Якоби. Мы демонстрируем, как этот результат может быть использован для вывода аналитических формул для решений общих алгебраических и дифференциальных матричных уравнений Риккати.