Аннотация:
Изоморфные объекты (например группы или векторные пространства) практически неразличимы – это одна из первых вещей, которые объясняют студенту в курсе абстрактной алгебры. Например, два пятимерных векторных пространства (над одним полем) неразличимы… но так ли это? Оказывается, чтобы объекты можно было считать одинаковыми, нужно, чтобы изоморфизм между ними был единственным или хотя бы чтобы можно было выбрать «канонический» изоморфизм. В противном случае могут встретиться нетривиальные «семейства» объектов. Мы приведем пример такого семейства векторных пространств (параметризованного окружностью), что невозможно (непрерывно) отождествить все эти пространства (хотя можно отождествить любые два).
Мы подробно обсудим этот феномен и классифицируем такие семейства в терминах главных расслоений. Я расскажу о применениях этих понятий в топологии, алгебре и геометрии. Если позволит время, я расскажу об одной (алгебраической) гипотезе, связанной с главными расслоениями, в которой Ивану Панину и мне удалось продвинуться во время ЛШСМ-2012.
От слушателей требуется знание основ абстрактной алгебры (понятия групп, векторных пространств, их изоморфизмов), и основ топологии (открытые множества и непрерывные отображения).
Примерный план
Нетривиальные семейства векторных пространств: векторные расслоения.
Категории, изоморфизмы объектов, группы автоморфизмов.
Локально тривиальные семейства объектов на топологическом пространстве, главные расслоения, пучки, неабелевы когомологии.
Топологии на алгебраических пространствах: топология Зарисского и этальная топология. Редуктивные группы. Гипотеза Гротендика–Серра.