Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






International Workshop on Statistical Learning
27 июня 2013 г. 12:00–12:30, г. Москва
 


Robust clustering using adaptive weights

V. G. Spokoinyab

a Weierstrass Institute for Applied Analysis and Stochastics, Berlin
b Research laboratory in Predictive Modeling and Optimization at PhysTech (PreMoLab), Moscow

Количество просмотров:
Эта страница:463
Youtube:

V. G. Spokoiny



Аннотация: This talk presents a new method of clustering in high dimension which is stable against outliers and does not require to know the number of clusters or their shape. Clustering structure of the data is described by a $n \times n$ matrix of weights whose elements are iteratively updates. The parameters of the method are calibrated by the ‘propagation’ conditions and the results describe a separation distance between clusters which ensures cluster identification with a high probability. Numerical complexity of the method is of order $d \times x n^2$ and it is feasible even in high dimension. The performance of the method is illustrated by the simulation study and a practical example. [Joint work with Elmar Diederichs (MIPT, Moscow)]

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024