Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






International Workshop on Statistical Learning
26 июня 2013 г. 11:30–12:00, г. Москва
 




[Deep neural network learning by scattering]

S. G. Mallat

Ècole Normale Supérieure, Paris
Дополнительные материалы:
Adobe PDF 6.9 Mb

Количество просмотров:
Эта страница:287
Материалы:60
Youtube:

S. G. Mallat



Аннотация: Deep neural networks are remarkably successful hybrid classifiers, first trained on large data bases of unlabeled examples, and then optimized with a discriminative supervised classi er. They provide state of the art results in computer vision, speech recognition, music and bio-medical classification, with little mathematical understanding of their performance. We introduce a mathematical model of deep neural networks with scattering transforms, which cascade complex valued unitary operators and a contractive modulus. In this framework, unsupervised learning amounts to optimize a contraction of the space, while maximizing the volume occupied by representations of unlabeled examples. These deep scattering provides new models of stochastic processes, whose properties are analyzed. Wavelet unitary operators appear to be nearly optimal for the first network layers of many audio and image classifiers. Applications will be discussed and shown on images and sounds.

Дополнительные материалы: mallat.pdf (6.9 Mb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024