|
|
6 марта 2013 г. 11:30, Research Workshop of Israel Science Foundation on Orbits, Primitive Ideals and Quantum Groups, The Weitsmann institute of Science, The University of Haifa, Israel
|
|
|
|
|
|
Orbit closures
V. L. Popov Steklov Mathematical Institute of the Russian Academy of Sciences
|
Количество просмотров: |
Эта страница: | 324 |
|
Аннотация:
Let $G$ be a connected linear algebraic group, let $V$ be a finite dimensional
algebraic $G$-module, and let $O_1$ and $O_2$ be two $G$-orbits in $V$. I shall describe a constructive
way to find out whether or not $O_1$ lies in the closure of $O_2$. This yields a constructive way
to find out whether given two points of $V$ lie in the same orbit or not. Several classical
problems in algebra and algebraic geometry are reduced to this problem.
Язык доклада: английский
Website:
https://www.wisdom.weizmann.ac.il/SpringSchool/week2.html
|
|