Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция «Анализ и особенности», посвященная 75-летию со дня рождения Владимира Игоревича Арнольда
19 декабря 2012 г. 10:00–10:45, г. Москва, МИАН
 


Geometry of complex surface singularities

[Геометрия комплексных особенностей поверхностей]

Нойман Уолтер
Видеозаписи:
Flash Video 308.5 Mb
Flash Video 1,848.2 Mb
MP4 1,172.5 Mb

Количество просмотров:
Эта страница:698
Видеофайлы:167

Walter Neumann
Фотогалерея



Аннотация: A complex variety has two intrinsic metric space structures in neighborhood of any point (“inner” and “outer” metric) which are uniquely determined from the complex structure up to bilipschitz change of the metric (changing distances by at most a constant factor). In dimension 1 the inner metric (given by minimal arc­length within the variety) carries no interesting information, and it is only very recently, starting with a 2008 paper [1] of Birbrair and Fernandes, that it has become clear how rich metric information is in higher dimensions. Inner metric in dimension 2 is now very well understood through work of Birbrair, Pichon and the speaker [2]. The talk will give an overview of this work, and, given time, describe some results of the speaker and Pichon about outer metric [3].

Язык доклада: английский

Список литературы
  1. Birbrair L., Fernandes A., “Inner metric geometry of complex algebraic surfaces with isolated singularities”, Comm. Pure Appl. Math., 2008, no. 61, 1483–1494  crossref  mathscinet  zmath  scopus
  2. Birbrair L., Neumann W.D. and Pichon A. The thick-thin decomposition and bilipschitz classification of normal surface singularities, 2011, arXiv: 1105.3327  mathscinet
  3. Neumann W.D., Pichon A., “Lipschitz geometry of complex surfaces: analytic invariants and equisingularity”, 2012, arXiv: 1211.4897
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024