|
|
Algebraic Structures in Integrable Systems
7 декабря 2012 г. 15:00–15:50, г. Москва, МГУ им. М.В. Ломоносова
|
|
|
|
|
|
Gaudin model and Cactus group
L. G. Rybnikov National Research University "Higher School of Economics"
|
Количество просмотров: |
Эта страница: | 170 |
|
Аннотация:
Cactus group is the fundamental group of the real locus of the Deligne-
Mumford moduli space of stable rational curves. We define an action of
this group on the set of Bethe vectors of the Gaudin magnet chain (for Lie
algebra $\mathfrak{sl}(2)$) and relate this to the Berenstein-Kirillov group of piecewise
linear transformations of the Gelfand-Tsetlin polytope. Some conjectures
generalizing this construction will be discussed.
Язык доклада: английский
|
|