Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Algebraic Structures in Integrable Systems
3 декабря 2012 г. 16:10–17:00, г. Москва, МГУ им. М.В. Ломоносова
 


Limits of integrable Hamiltonians on semisimple Lie algebras

È. B. Vinberg

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Видеозаписи:
Flash Video 1,818.3 Mb
Flash Video 365.4 Mb
MP4 1,386.2 Mb



Аннотация: Let $\mathfrak{g}$ be a semisimple Lie algebra, and let $P(\mathfrak{g})$ be the corresponding Poisson algebra. With each regular element $a\in \mathfrak{g}$, the argument shift method associates a commutative subalgebra $F(a)\subset P(\mathfrak{g})$, whose transcendence degree is maximal possible, i.e., is equal to the dimension of a Borel subalgebra of $\mathfrak{g}$. When a tends to a singular element in a proper way, the subalgebra $F(a)$ tends to some commutative subalgebra of the same transcendence degree. The cases when a tends to a singular element remaining in the same Cartan subalgebra, were investigated in old works of the speaker (1990) and V.V. Shuvalov (2002). Some other cases will be discussed in the talk. An interesting problem is to describe the variety of integrable quadratic Hamiltonians arising in this way.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024