|
|
Группы Ли и теория инвариантов
28 ноября 2012 г. 16:45, г. Москва, ГЗ МГУ, ауд. 13-06
|
|
|
|
|
|
Унирациональность и существование бесконечно транзитивных бирациональных
моделей (совместная работа с Ф. Богомоловым и И. Каржемановым)
К. Куюмжиян |
|
Аннотация:
Цель доклада — обсудить связь между унирациональными алгебраическими многообразиями и такими аффинными алгебраическими многообразиями $X$, на которых группа $\mathrm{SAut}(X)$ специальных автоморфизмов (получаемых из $(\mathbf k,+)$-действий на $X$) действует на гладких точках бесконечно транзитивно. В статье Аржанцева–Фленнера–Калимана–Кутчебауха–Зайденберга доказано, что любое такое многообразие унирационально, а также что обратное утверждение неверно. Однако в гипотезе Богомолова (пока не доказанной) утверждается, что для любого унирационального многообразия $Y$ существует такое $N$ и такая аффинная гладкая бирациональная модель $X$ многообразия $Y \times \mathbf k^N$, что $\mathrm{SAut}(X)$ действует на $X$ бесконечно транзитивно. Эта гипотеза доказана в частном случае, когда на $Y$ имеется достаточно (хотя бы $\dim Y$) структур расслоения с общим слоем $\mathbb P^1$.
|
|