Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2012
26 июля 2012 г. 11:15, г. Дубна
 


Экстремальная комбинаторика. Лекция 2

А. А. Разборов
Видеозаписи:
Flash Video 2,857.1 Mb
Flash Video 476.8 Mb
MP4 1,809.4 Mb

Количество просмотров:
Эта страница:542
Видеофайлы:163

А. А. Разборов



Аннотация: В олимпиадных задачах многие слушатели сталкивались с вопросами о том, насколько большими (или малыми) могут быть семейства конечных объектов, удовлетворяющих определённым ограничениям. Не всем, однако, известно, что систематическим изучением вопросов такого рода занимается целая наука, называемая экстремальной комбинаторикой, и что эта наука изобилует трудными и красивыми теоремами, а также открытыми задачами с простой и естественной формулировкой, не поддающихся решению в течении десятилетий.
В нашем курсе мы, на примере некоторых классических результатов, поговорим об общих методах решения дискретных экстремальных задач, включая (довольно неожиданно!) алгебраические и аналитические методы. Типичные поводы для такого разговора включают:
  • - Теорема Мантеля-Турана: сколько рёбер может содержать граф, не имеющий ни одной клики на $k$ вершинах?
  • - Теорема Шпернера: каково наибольшее возможное число подмножеств в $n$-элементном множестве с тем свойством, что ни одно не содержит другое?
  • - Теорема Эрдеша–Секереша: какой максимальной длины может быть последовательность различных вещественных чисел, не содержащая ни возрастающей ни убывающей подпоследовательности из $k$ элементов?


Website: https://www.mccme.ru/dubna/2012/courses/razborov.htm
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024