Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар им. В. А. Исковских
20 сентября 2012 г. 18:00, г. Москва, МИАН, комн. 530 (ул. Губкина, 8)
 


Поведение лог канонических порогов при факторизации по тору

Хендрик Сюсс

Московский государственный университет им. М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:212

Аннотация: Лог-канонический порог многообразия Фано $X$ — инвариант, имеющий многочисленные приложения в бирациональной и кэлеровой геометрии. Он определяется выбором конечной подгруппы $G$ в группе $Aut(X)$. Если дополнительно выбрать максимальный тор $T$ в группе автоморфизмов нашего многообразия $X$, то возникает естественное желание свести вычисление лог-канонического порога на $X$ к вычислению лог-канонического порога на (каком-то) факторе $X=X/T$. Оказывается, это можно сделать, когда выполнены следующие условия
(i) $G$ содержится в нормализаторе максимального тора,
(ii) действие группы $G$ на характерах тора $T$, возникающее из действия группы $G$ на $T$ сопряжениями, имеет единственную неподвижную точку (тривиальный характер).
В этой ситуации многообразие $X$ называется симметрическим. В качестве приложения мы даем критерий существования метрики Кэлера–Эйнштейна на симметрических $T$-многообразиях Фано сложности 1.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024