Аннотация:
В докладе излагаются результаты автора, связанные с исследованием ветвящихся процессов. Вначале рассматривается условная предельная теорема ягломовского типа для числа частиц одного типа в ветвящемся процессе Беллмана–Харриса с несколькими типами частиц и находится условное предельное совместное распределение нормированных численностей частиц разных типов, когда время стремится к бесконечности. Эти результаты применяются далее к ветвящемуся случайному блужданию. Кроме того, в рамках модели (неветвящегося) случайного блуждания по целочисленной решетке вводится новое понятие времени достижения с запретом, изучается вероятность его конечности и асимптотическое поведение хвоста его функции распределения. Для критического каталитического ветвящегося случайного блуждания впервые найдено асимптотическое поведение вероятности нахождения частиц в произвольной данной точке пространства. Доказаны также условные предельные теоремы ягломовского типа, причем предельное распределение существенно зависит от размерности решетки: при d=2 распределение является дискретным, при d=4 – смесью экспоненциального и дискретного, а при всех других значениях оказывается экспоненциальным.