|
|
Семинар Лаборатории алгебраической геометрии и ее приложений
1 июня 2012 г. 17:00, г. Москва, ул. Вавилова, 7
|
|
|
|
|
|
[Transcendental Kaehler cohomology classes and deformation theory]
D. Popovici Университет Поль Сабатье (Тулуза 3)
|
Количество просмотров: |
Эта страница: | 150 |
|
Аннотация:
It has long been conjectured that the deformation limit of a holomorphic family of compact Kaehler manifolds will be a class $C$ manifold (i.e. bimeromorphically equivalent to a compact Kahler manifold). If confirmed, this expectation will be optimal since an example of Hironaka shows that the limit fibre need not be Kaehler. In a strategy aimed at proving this statement, which has already led very recently to the resolution of the algebraic case, we have only one major difficulty left: the resolution of Demailly's conjecture on transcendental Morse
inequalities. We will present very recent results in this direction, such as an almost holomorphic embedding theorem for compact Kaehler, possibly non-projective, manifolds into complex projective spaces (the non-integrable analogue of the Kodaira embedding theorem).
Язык доклада: английский
|
|