|
|
Петербургский семинар по теории представлений и динамическим системам
23 мая 2012 г. 15:00, г. Санкт-Петербург, ПОМИ, ауд. 311 (наб. р. Фонтанки, 27)
|
|
|
|
|
|
Julia sets converging to filled quadratic Julia sets
R. Kozma Stony Brook University
|
Количество просмотров: |
Эта страница: | 147 |
|
Аннотация:
Previous results by Devaney et al. have shown that for the family of singularly perturbed quadratic maps $z^2 + \lambda/z^2$ the Julia sets converge to the unit disk as $\lambda \to 0$. We give a generalization
of this result to maps of the family
$$
F_\lambda(z) = z^2 + c +\lambda/z^2
$$ where $c$ is the center of a hyperbolic component of the
Mandelbrot set. Using symbolic dynamics and Cantor necklaces, we show
that as $\lambda \to 0$, the Julia set of $F_\lambda$ converges to the
filled Julia set of $z^2+c$.
Язык доклада: английский
|
|