Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция «Birational and affine geometry»
26 апреля 2012 г. 13:00–13:50, г. Москва, МИАН
 


Deformation equivalence of affine normal surfaces

H. Flenner

Ruhr-Universität Bochum, Mathematisches Institut
Видеозаписи:
Flash Video 334.0 Mb
Flash Video 2,031.9 Mb
MP4 1,266.1 Mb

Количество просмотров:
Эта страница:510
Видеофайлы:144

H. Flenner
Фотогалерея



Аннотация: Two varieties $X_1$, $X_2$ over $\mathbb{C}$ are called deformation equivalent, if there is a family $(\mathcal{X}(s))_{s\in S}$ over a connected base $S$ such that $X_i=\mathcal{X}(s_i)$, $i=1,2$, for some points $s_1, s_2\in S$. If for the class of varieties considered there is a moduli space then the varieties belonging to a connected component of this moduli space form just deformation equivalent varieties. In this talk we consider deformation equivalence for the class say $\mathcal{C}$ of affine normal surfaces, which admit an $\mathbb{A}^1$-fibration. A family of surfaces in $\mathcal{C}$ consists in a completable flat morphism $p:\mathcal{V}\to S$ such that every fiber is a surface in $\mathcal{C}$. Here the morphism $p$ is called completable if it is the restriction of some proper flat map $\bar{p}\colon\bar{\mathcal{V}}\to S$ to an open subset $\mathcal{V}\subset \bar{\mathcal{V}}$ such that the boundary $\mathcal{D}=\bar{\mathcal{V}}\setminus \mathcal{V}$ is a family of normal crossing divisors with constant dual graph. We note that except for a few exceptional cases one cannot expect for this class a moduli space. We characterize in this talk as to when two surfaces in $\mathcal{C}$ are deformation equivalent. This characterization is given in purely combinatorial terms using the extended divisor of a surface with a $\mathbb{C}_+$-action. (Joint with S. Kaliman and M. Zaidenberg.)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024