|
|
Международная конференция «Birational and affine geometry»
24 апреля 2012 г. 14:30–15:20, г. Москва, МИАН
|
|
|
|
|
|
On the rectifiability of rational plane curves
K. Palkaab a Polish academy of sciences
b University of Quebec at Montreal
|
Количество просмотров: |
Эта страница: | 378 |
Фотогалерея
|
Аннотация:
Let $\bar E\subseteq \mathbb{P}^2$ be a rational cuspidal curve defined over complex numbers. The Coolidge-Nagata conjecture states that such a curve is rectifiable, i.e. it can be transformed into a line by a birational automorphism of $\mathbb{P}^2$. We will prove some new results in this direction, showing in particular that the conjecture holds if $\bar E$ has more than four cusps.
Язык доклада: английский
|
|