Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция «Birational and affine geometry»
24 апреля 2012 г. 14:30–15:20, г. Москва, МИАН
 


On the rectifiability of rational plane curves

K. Palkaab

a Polish academy of sciences
b University of Quebec at Montreal

Количество просмотров:
Эта страница:378

K. Palka
Фотогалерея

Аннотация: Let $\bar E\subseteq \mathbb{P}^2$ be a rational cuspidal curve defined over complex numbers. The Coolidge-Nagata conjecture states that such a curve is rectifiable, i.e. it can be transformed into a line by a birational automorphism of $\mathbb{P}^2$. We will prove some new results in this direction, showing in particular that the conjecture holds if $\bar E$ has more than four cusps.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024