Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Школа по алгебре и алгебраической геометрии
18–20 августа 2011 г., г. Екатеринбург
 


Кольца и многообразия

М. Рид

University of Warwick, Mathematics Institute
Видеозаписи:
Flash Video 513.2 Mb
Flash Video 535.4 Mb
Flash Video 595.8 Mb
MP4 535.4 Mb
MP4 513.2 Mb
MP4 595.8 Mb

Количество просмотров:
Эта страница:769
Видеофайлы:388

М. Рид


##3. ##2. ##1.
Аннотация: I leave the title and abstract as vague as possible, so that I can talk about whatever I feel like on the day. Many varieties of interest in the classification of varieties are obtained as Spec or Proj of a Gorenstein ring. In codimension $\leqslant3$, the well known structure theory provides explicit methods of calculating with Gorenstein rings. In contrast, there is no useable structure theory for rings of codimension $\geqslant4$. Nevertheless, in many cases, Gorenstein projection (and its inverse, Kustin–Miller unprojection) provide methods of attacking these rings. These methods apply to sporadic classes of canonical rings of regular algebraic surfaces, and to more systematic constructions of Q-Fano 3-folds, Sarkisov links between these, and the 3-folds flips of Type A of Mori theory.
For introductory tutorial material, see my website + surfaces + Graded rings and the associated homework.
For applications of Gorenstein unprojection, see “Graded rings and birational geometry” on my website + 3-folds, or the more recent paper.
Gavin Brown, Michael Kerber and Miles Reid, Fano 3-folds in codimension 4, Tom and Jerry (unprojection constructions of Q-Fano 3-folds), Composition to appear, arXiv:1009.4313
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024