Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Школа по алгебре и алгебраической геометрии
15–17 августа 2011 г., г. Екатеринбург
 


Введение в гомологическую алгебру

Л. Е. Посицельский

Институт проблем передачи информации им. А. А. Харкевича РАН, г. Москва
Видеозаписи:
Flash Video 542.9 Mb
Flash Video 346.2 Mb
Flash Video 564.1 Mb
MP4 346.2 Mb
MP4 542.9 Mb
MP4 564.1 Mb
Дополнительные материалы:
Adobe PDF 91.1 Kb
Adobe PDF 97.0 Kb
Adobe PDF 72.1 Kb

Количество просмотров:
Эта страница:1428
Видеофайлы:840
Материалы:332

Л. Е. Посицельский


##3. ##2. ##1.
Аннотация: The contents of the course will depend on the audience' background and interests. I plan to start with exact sequences of abelian groups, complexes and their cohomology, the snake lemma, 5-lemma, and chain homotopy. Then we will discuss nonexactness of Hom in the category of modules over a (noncommutative) ring, projective and injective modules, resolutions, and the Ext functor. This should be enough for the first lecture, and then we will see. Other topics to be covered include additive and abelian categories, additive functors and their derived functors, the homotopy and derived categories of abelian categories, triangulated categories and the Verdier localization, and semiorthogonal decompositions arising in connection with the injective and projective resolutions. Spectral sequences may or may not be covered.
Bibliography: before starting on homological algebra, it may be instructive to learn a bit of basic algebraic topology. So the audience is encouraged to look into the first chapters of the book by Fuchs and Fomenko, where they discuss the basic properties of the homology and homotopy groups of topological spaces. Fuchs-Fomenko also have an excellent discussion of spectral sequences. Concerning homological algebra proper, there are introductory textbooks by Rotman and Weibel, and a much more advanced book by Gelfand-Manin. One can also read about triangulated categories in Verdier's article in SGA 4 1/2.

Дополнительные материалы: posic_2.pdf (91.1 Kb) , posic_3.pdf (97.0 Kb) , posic_1.pdf (72.1 Kb)
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024