Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Заседания Московского математического общества
20 марта 2012 г. 18:30, г. Москва, ГЗ МГУ, аудитория 16-10
 


Динамика модели песчаных куч и самоподобные группы

Т. Смирнова-Нагнибеда

Количество просмотров:
Эта страница:344

Т. Смирнова-Нагнибеда
Фотогалерея

Аннотация: Абелева модель песчаных куч (Abelian sandpile model) была построена физиками для изучения феномена самоорганизованной критичности. Модель определяется с помощью очень простой игры на конечном графе, но ведет к сложной динамике, если рассматривать ее на возрастающих последовательностях графов. Физиками предсказаны значения критических показателей модели на кубических решетках, но строгое математическое обоснование этих предсказаний пока что получено только в случае бесконечного дерева. Будет дано введение в математическую теорию модели песчаных куч и рассказано о том, как теория самоподобных групповых действий позволяет строго вычислить критические экспоненты модели на широком классе самоподобных графов, связанных с хорошо известными фракталами.
Теория самоподобных групп была развита Некрашевичем на основании работ Григорчука и соавторов по построению конечно-порожденных групп с экзотическими свойствами, например, групп промежуточного роста. Самоподобные группы задаются своим действием на бесконечном корневом дереве и могут быть описаны с помощью конечных автоматов. Многие такие группы тесно связаны с динамикой рациональных функций и их множествами Жюлиа.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024