Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Российско-германская конференция по многомерному комплексному анализу
2 марта 2012 г. 16:40, г. Москва, МИАН
 


Global Hamiltonian Stability of ${\mathrm U}(1)^n$-orbits in $\mathbb P^n(\mathbb C)$

Ryoichi Kobayashi

Nagoya University
Видеозаписи:
Flash Video 2,135.1 Mb
Flash Video 351.2 Mb
MP4 1,335.8 Mb

Количество просмотров:
Эта страница:516
Видеофайлы:236

Ryoichi Kobayashi
Фотогалерея



Аннотация: We prove that any ${\mathrm U}(1)^n$-orbit in $\mathbb P^n$ is global Hamiltonian stable. The idea of the proof is the following: (1) we extend one ${\mathrm U}(1)^n$-orbit to the moment torus “fibration” $\{T_t\}_{t\in\Delta_n}$ and consider its Hamiltonian deformation $\{\phi(T_t)\}_{t\in\Delta_n}$ where $\phi$ is a Hamiltonian diffeomorphism of $\mathbb P^n$ and then: (2) we compare each ${\mathrm U}(1)^n$-orbit and its Hamiltonian deformation by looking at the large $k$ asymptotic behavior of the sequence of projective embeddings defined, for each $k$, by the basis of $H^0(\mathbb P^n,\mathcal O(k))$ obtained by the Borthwick–Paul–Uribe semi-clasasical approximation of the $\mathcal O(k)$ Bohr–Sommerfeld tori of the Lagrangian torus fibrations $\{T_t\}_{t\in\Delta_n}$ and its Hamiltoniasn deformation $\{\phi(T_t)\}_{t\in\Delta_n}$.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024