Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Российско-германская конференция по многомерному комплексному анализу
2 марта 2012 г. 10:00, г. Москва, МИАН
 


Non-Kähler complex structures on moment-angle manifolds and other toric spaces

Taras Panov

Moscow State University
Видеозаписи:
Flash Video 1,905.3 Mb
Flash Video 313.4 Mb
MP4 1,191.6 Mb

Количество просмотров:
Эта страница:729
Видеофайлы:252

Taras Panov
Фотогалерея



Аннотация: Moment-angle complexes are spaces acted on by a torus and parameterised by finite simplicial complexes. They are central objects in toric topology, and currently are gaining much interest in homotopy theory. Due the their combinatorial origins, moment-angle complexes also find applications in combinatorial geometry and commutative algebra.
After an introductory part describing the general properties of moment-angle complexes we shall concentrate on the complex-analytic aspects of the theory.
We show that the moment-angle manifolds corresponding to complete simplicial fans admit non-Kähler complex-analytic structures. This generalises the known construction of complexanalytic structures on polytopal moment-angle manifolds, coming from identifying them as LVM-manifolds (or non-degenerate intersections of Hermitian quadrics). The classical series of Hopf and Calabi–Eckmann manifolds are particular examples. We proceed by describing the Dolbeault cohomology and certain Hodge numbers of moment-angle manifolds by applying the Borel spectral sequence to holomorphic principal bundles over toric varieties.
(Joint work with Yuri Ustinovsky.)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024