Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Российско-германская конференция по многомерному комплексному анализу
28 февраля 2012 г. 11:30, г. Москва, МИАН
 


Trisymplectic manifolds

Misha Verbitsky

Higher School of Economics
Видеозаписи:
Flash Video 2,058.8 Mb
Flash Video 338.6 Mb
MP4 1,286.9 Mb

Количество просмотров:
Эта страница:1142
Видеофайлы:532

Misha Verbitsky
Фотогалерея



Аннотация: A trisymplectic structure on a complex $2n$-manifold is a triple of holomorphic symplectic forms such that any linear combination of these forms has rank $2n$, $n$ or $0$. We show that a trisymplectic manifold is equipped with a holomorphic $3$-web and the Chern connection of this $3$-web is holomorphic, torsion-free, and preserves the three symplectic forms. We construct a trisymplectic structure on the moduli of regular rational curves in the twistor space of a hyperkaehler manifold. We show that the moduli space $M$ of holomorphic vector bundles on ${\mathbb{CP}}^3$ that are trivial along a line admits a trisymplectic structure.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024