Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Гамильтоновы системы и статистическая механика
25 ноября 2024 г. 16:30, г. Москва, МИАН, ауд. 104
 


Гиперболические полициклы. Необходимое и достаточное условие рождения кратных предельных циклов

А. В. Дуков
Видеозаписи:
MP4 2,848.6 Mb
MP4 1,343.9 Mb

Количество просмотров:
Эта страница:87
Видеофайлы:10



Аннотация: Рассмотрим гладкое ориентируемое двумерное многообразие и гладкое векторное поле на нём. Гиперболическим полициклом называется вложенный ориентированный граф, вершины которого - гиперболические сёдла, а рёбра - сепаратрисные связки этих сёдел. При малом возмущении данного полицикла могут родиться предельные циклы, то есть периодические траектории, изолированные от остальных периодических траекторий.
Вопрос о количестве рождающихся предельных циклов (так называемая цикличность) из гиперболических полициклов является частным случаем проблемы Гильберта-Арнольда. Разумной (полиномиальной) оценки на цикличность полицикла из n сёдел для любого n нет до сих пор. Однако если ограничиться кратными предельными циклами, то есть теми, что при возмущении распадаются на несколько циклов, то оказывается, что они более податливы для исследования, и описание их поведения выливается в стройную теорию. Красота теории заключается в том, что стартуя с задачи, сформулированной в терминах дифференциальных уравнений, мы в итоге попадаем в коммутативную алгебру, где исследуем многочлены.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024