Аннотация:
Математические модели многих процессов в механике сплошных сред (МСС), физике плазмы (ФП) и астрофизике (АФ) представляют собой уравнения в частных производных (УЧП). При создании компьютерных моделей эти уравнения заменяются дискретными уравнениями, которые решаются численно. Для исследования математических и численных моделей МСС, ФП и АФ развита техника построения дисперсионных соотношений. Дисперсионные соотношения описывают волновые процессы (процессы переноса возмущения со скоростью, отличной от скорости движения вещества) в средах. Классическое дисперсионное соотношение – это нелинейное алгебраическое уравнение (связывающее параметры волны – волновое число $k$ и волновую частоту $\omega$), которое ставится в соответствие непрерывной системе уравнений в частных произодных. Существует техника, которая позволяет поставить в соответствие континуальной или дискретной модели МСС, ФП и АФ дисперсионное соотношение (классическое или приближённое соответственно). В лекции будет показано применение приближенных дисперсионных соотношений к разработке и исследованию численных алгоритмов для «вычислительно-трудоемкой» задачи моделирования динамики газодисперсных сред методом гидродинамика сглаженных частиц (Smoothed Particle Hydrodynamics, SPH).