Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция "Квантовая оптика и смежные вопросы"
7 сентября 2024 г. 16:40–18:10, Онлайн
 


Many-body correlation functions by the recursion method: symbolic nested commutators, universal operator growth hypothesis and pseudomode expansion

O. V. Lychkovskiy
Видеозаписи:
MP4 361.4 Mb

Количество просмотров:
Эта страница:72
Видеофайлы:29



Аннотация: Recursion method is a technique to solve coupled Heisenberg equations in a tridiagonal operator basis constructed via Lanczos algorithm. We report an implementation of the recursion method that addresses quantum many-body dynamics in the nonperturbative regime. The implementation has three key ingredients: a computer-algebraic routine for symbolic calculation of nested commutators, a procedure to extrapolate the sequence of Lanczos coefficients according to the universal operator growth hypothesis and the pseudomode expansion addressing the large time asymptotics. We apply the method to calculate infinite-temperature correlation functions for spin-1/2 systems on one- and two-dimensional lattices. The method allows one to accurately calculate transport coefficients. As an illustration, we compute the diffusion constant for the transverse-field Ising model on a square lattice. The talk is based on arXiv 2401.17211, 2407.12495.
The research is supported by the Russian Science Foundation under the grant No. 24-22-00331.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024